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ABSTRACT 

Let P and Q be real polynomials of degrees d and e, respectively, and f a 
periodic function. It is shown that, if f is s times differentiable at Q(O), where 
s >= 7de 3 log 14e 3, then for every ~ > O the diophantine inequality 

l e (x )~Q(x) )  - P(0)f(Q(0)) - y I < e, x ÷ 0, 

has a solution. This settles in particular a question raised by Furstenberg and 
Weiss [6]. 

1. Recurrence properties of polynomials 

Let 11 x 11 denote the distance from x to the nearest integer. The well-known 
Weyrs equidistribution theorem [8] implies that, given a real polynomial P 
and e > 0, there exists a non-trivial solution to the diophantine inequality 

(1.1) II P ( x )  - e(0) II < e. 

Obviously, this implies that (1.1) actually has infinitely many solutions. 

Moreover, the set of solutions is "large" in the sense that it intersects any IP- 
set. We shall not elaborate here on the notion of  an IP-set (see [5] for an 
extensive treatment of IP-sets), but only ment ion that the foregoing means in 
particular that the set of solutions of (1.1) is re la t ive ly  d e n s e ,  namely it is of 
bounded gaps [5, Lemma 9.2]. 
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2. Recurrence for smooth functions 

It turns out that products of functions recurring often arbitrarily close to 
their values at 0, i.e. satisfying an inequality such as (1.1) for "many" (in the 
sense discussed in the preceding section) values of  x, need not be such. 
Furstenberg and Weiss [6, Sec. 6] showed this by proving that, whereas the 
functions x and cos x a  (for any fixed a) obviously have the recurrence property 
in question, the function x cos x a  is not such for a.e.a. This was accomplished 
as follows. Le Veque [7] proved that, for a.e. a, the sequence (x cos xa)F_ 1 is 
uniformly distributed modulo 1. Furstenberg and Weiss proved that, if(xk)F, l 
is a sufficiently rapidly growing sequence of integers, then for any positive 

integer d the sequence 

(XkCOSXka, (Xk + 1)COS(Xk + 1)a . . . . .  (Xk + d - 1)cos(x/c + d - 1)ct) 

is uniformly distributed modulo (1, 1 . . . .  ,1)  for a.e.a.  Now for every such t~ 
there exist in particular arbitrarily large blocks of  consecutive integers such 
that, for each x belonging to one these blocks, we have, say, U x cos x a  H > ~; 

in other words, the set of  solutions of  II x cos xot H < ~ cannot be relatively 
dense. 

In view of  the above, it was asked in [6] whether for e v e r y ,  and e > 0 the 
inequality U x cos xt,  [[ < e has a non-trivial solution. 

We shall show that the answer to this question is affirmative. In fact, we shall 

obtain the rather more general 

THEOREM 2.1. Let P, Q ~R[x]  be polynomials o f  degrees d and e, respecti- 
vely, and f :  R ~ R a periodic function, s times differentiable at O, where 

(2.1) s > 7de s log 14e 3. 

Then for every e > 0 there exists a positive integer x such that 

(2.2) [I v(x ) f (Q(x) )  - v(o)f(Q(O)) II < e. 

In Section 3 we discuss various improvements  of  the theorem for special 
cases. The proof  itself is presented in Section 4. 

3. Improving Theorem 2.1 

The proof  of  Theorem 2.1, to be carded out in the next section, makes use of  
the following result of  R. C. Baker. 

THEOREM A [2, Th. 2]. Let 1 _-< al < a, < . . .  < ak <---- e be integers. There 
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exists a constant D = D( e ) having the following property. For any real numbers 

Cl, c2, • • •, Ck and positive integer N there exists an integer 1 < x < N with 

(3.1) II cJ II < DN-1/(Tt~l°gl4~') ,  1 < j  < k. 

This theorem will be applied as follows. Suppose the polynomial Q of 
Theorem 2.1 is given by Q ( x ) =  Zf=o cjx j. By Theorem A, the system of 

diophantine inequalities 

(3.2) II qxJ II <Dx-l/(7eSl°gl4e3), 1 < j  < e, 

has infinitely many solutions. The right-hand side of (2.1) is just the product of 
the degree of P and the denominator  of the exponent of the right-hand side of 
(3.2). Going over the proof  of Theorem 2.1 (see Section 4), it is easily verified 
that, if the right-hand side of (3.2) can be replaced by Cx-m/r, then the 
fight-hand side of (2.1) can be replaced by dr. Thus, any future improvement  
of Theorem A will automatically yield a corresponding improvement  of 

Theorem 2.1. 
For some special types of  polynomials, improved versions of Theorem A are 

available. If  some of the coefficients of Q vanish, then Theorem A itself leads to 
a strengthening of Theorem 2.1. For example, if Q(x)  = co + Ce Xe , then the 
fight-hand side of (2.1) reduces to 7de 2 log 14e 2. Moreover, in this case 
Theorem A can be improved as follows for e > 9 [4]: For every sufficiently 

large N there exists some 1 < x _-< N with 

II ce xe II < N-l°ge/4eO°ge+ I)log(eloge+ 1) 

Hence, if Q(x)  = Co + Ce Xe, e > 9, then (2.1) may be replaced by 

s < 4de(log e + 1)log(e log e + 1)/log e. 

Results improving upon Theorem A are also known if e _--_ 3, with corres- 
ponding improvements  of Theorem 2.1. In fact, for e -- l, already the classical 
Dirichlet's theorem allows us to replace the right-hand side of(3.1) by N - 1  so 
we only need s ~ d in  (2.1). Similarly, for e = 2, the right-hand side of(3. l) can 
be replaced by N -~/4+~ for arbitrarily small ~ > 0 [3], and thus we have 
s ~ 4 d  + 1 instead of  (2.1). For e = 3, the right-hand side of (3.1) can be 
reduced to N -ln2+a [2], giving s >_- 12d + 1 in place of(2.1). 
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4. Proof of Theorem 2.1 

Let P(x)  = bo + blx + • • • + bdx d and Q(x)  = Co + ClX -~- ° ° ° Ce ~ e .  In view 
of Theorem A there exists an ascending sequence (Xk)~-i of positive integers 
such that for each k we have 

II cjx  II < D x ;  '/7e'l°z14e3, 1 < j  < e, 

for an appropriately chosen constant D. Without loss of generality, we may 
assumefto be of period 1. For a real number t, denote by {t} the number in 
( -  ½, ½] for which t - { t }  is an integer. Define a polynomial QI by Q l ( x ) =  

Q(x)  - co. Let h be an arbitrary fixed positive integer. Then 

P(hxk) f (Q(hxi))  = P(hxk)" f(Co + {Ql(hxk)}) 

= 2 b,(hxk)' .  _ ,=0 -o j! (Ql(hxk)}J + o((Qt(hXk)}')  . 

Now 

I Y. <= BxZ . o hJ II cjx£ II 
i = o  j I 

< BxghesesD s "o(x;a7e'log 14e') = Bl(h ). o ( x ;  ~) 

for certain constants B, Bl(h) and q > 0. For all sufficiently large k we have 

{Q,(hXk)}= ~ hJ{cfc~}. 

Consequently 

j - l  

P(hxk)f(Q(hxk)) = R(h  ) + o(1), 

where R is a polynomial of degree not exceeding d + es in h whose free term 
is bof(Co) and whose other coefficients are polynomials in Xk, 

{ClXK}, {C2X~, }, . . . .  {C~f, }. Replacing (XK) by a suitably chosen subsequence 
thereof, we may assume all these coefficients to converge modulo 1 as k --- oo, 
and therefore 

d+es 

P(hxk)f(Q(hxk)) k--~o ' P(O)f(Q(O))+ Y~ afiJ(mod 1) 
j - I  

for certain al, a 2 , . . . ,  ad+es. Weyl's theorem now completes the proof. 
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